
R300 – Advanced Econometric Methods

PROBLEM SET 3 - SOLUTIONS

Due by Mon. October 26

1. When the score is nonlinear in θ, i.e.,

∂ log fθ(x)

∂θ

is not a linear function of θ, the maximum-likelihood estimator (MLE) of θ is biased, in

general. The bias is typically n−1, i.e.,

Eθ(θ̂ − θ) =
bθ
n

+ o(n−1)

for some constant bθ.

(i) Derive the bias for the MLE of σ2 when xi ∼ N(µ, σ2).

(ii) Let θ̂(−i) be the MLE computed from the subsample of size n− 1 obtained on omitting

the ith observation. You have n such MLEs. Show in the case of (i) that the jackknife

estimator

θ̌ := n θ̂ − (n− 1) θ, θ := n−1
∑
i

θ̂(−i),

is exactly unbiased.

(i) The MLE of σ2 is

σ̂2 =
1

n

∑
i

(xi − x)2.

We have

Eθ(σ̂
2) = Eθ((xi − µ)2)− Eθ((x− µ)2) = σ2 − σ2

n
=
n− 1

n
σ2.

So, here, the bias is −σ2/n.

(ii) We have

σ̂2
−i =

1

n− 1

∑
j 6=i

(xj − x−i)2, x−i :=
1

n− 1

∑
j 6=i

xj.
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As before,

Eθ(σ̂
2
−i) = σ2 − σ2

n− 1
and, therefore,

n σ̂2 − (n− 1) σ̂2
−i

has expectation

Eθ(n σ̂
2 − (n− 1) σ̂2

−i) = n

(
n− 1

n
σ2

)
− (n− 1)

(
n− 2

n− 1
σ2

)
= ((n− 1)− (n− 2))σ2 = σ2

for any i. Therefore, the same holds on averaging over the i to construct the jackknife

estimator ∑
i n σ̂

2 − (n− 1) σ̂2
−i

n
.

In this example the jackknife kills all bias and is exactly unbiased.

2. Wage data are often top coded. We wish to estimate the following linear model for log

wages (wi),

wi = x′iβ + εi, εi ∼ N(0, σ2),

but, while we observe actual (log) wage wi when wi ≤ c we only observe c when wi > c.

Thus, our actual data are a random sample on (yi, xi) where

yi =

{
wi if wi ≤ c
c if wi > c

.

(i) Set up the likelihood function for this problem.

(ii) Derive an expression for the conditional mean of wi|xi in the subpopulation with wi ≤ c.

(iii) What does your response to (ii) imply for the suitability of a least-squares regression

of the non-coded outcomes on xi to recover β? Recall that this least-squares estimator is

the solution to

min
b

∑
i:yi<c

(yi − xib)2.

(i) The outcome variable (conditional on xi) is mixed continuous/discrete, with a mass point

at the threshold c. below that point, the data follow a normal distribution N(x′iβ, σ
2). So,

with θ = (β, σ2), the density is

fθ(yi|xi) =


1
σ
φ
(
yi−x′iβ
σ

)
if yi < c

1− Φ
(
c−x′iβ
σ

)
otherwise

.
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The likelihood function becomes∏
yi<c

1

σ
φ

(
yi − x′iβ

σ

)
×
∏
yi=c

(
1− Φ

(
c− x′iβ
σ

))
.

(ii) If vi ∼ N(0, σ2) then vi|vi ≤ c is truncated normal. Its distribution function is

P (vi ≤ v|vi ≤ c) =
P (vi ≤ v)

P (vi ≤ c)
=
Φ(v/σ)

Φ(c/σ)
,

and differentiating gives the density function as

1

σ

φ(v/σ)

Φ(c/σ)
.

Then (integrating by parts)

E(vi|vi ≤ c) =

∫ c
−∞

v
σ
φ(v/σ) dv

Φ(c/σ)
= −σ φ(c/σ)

Φ(c/σ)
=: −σλ(c/σ).

We then have

E(wi|xi, wi < c) = xiβ + E(εi|εi < c− xiβ) = xiβ − σλ((c− x′iβ)/σ).

(iii) The above calculation shows that, in the subpopulation of workers whose wages are

not top coded, the conditional mean is nonlinear in xi. Hence, a linear regression is not

appropriate for estimating the slope β.

3. Recall the problem where xi ∼ N(µ, σ2
i ). We previously considered

x̌ =
n∑
i=1

wixi, wi =
1/σ2

i∑n
i′=1 1/σ2

i′

as an estimator of µ.

(i) To implement x̌ we need an estimator of the σ2
i . Let ε̂i = xi − x, The usual estimator

would be

ε̂2i .

Show that this estimator is biased.
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(ii) A cross-fit estimator of σ2
i is

σ̂2
i = xi(xi − x−i), x−i =

1

n− 1

∑
j 6=i

xj.

Show that σ̂2
i is an unbiased estimator of σ2

i .

(iii) Does this imply that the plug-in estimator

ˆ̌x =
n∑
i=1

ŵixi, ŵi =
1/σ̂2

i∑n
i′=1 1/σ̂2

i′

of µ is unbiased?

(i) We can always write xi = θ + εi for εi ∼ N(0, σ2
i ). We have

ε̂i = xi − x̂i = (θ + εi)− (θ +
∑
j

εj/n) = εi −
∑n

j=1 εj

n
.

So,

ε̂2i =

(
εi −

∑n
j=1 εj

n

)2

= ε2i +

∑n
j=1

∑n
k=1 εj εk

n2
− 2

εi
∑n

j=1 εj

n
,

and

E(ε̂2i ) = E(ε2i ) +

∑
j E(ε2j)

n2
− 2

E(ε2i )

n
= σ2

i +
n−1

∑n
j=1 σ

2
j

n
− 2

σ2
i

n
6= σ2

i .

(ii) This is straightforward. Write

xi = θ + εi, εi ∼ N(0, σ2
i ).

Then

σ̂2
i = xi(xi − x̂−i) = (θ + εi) εi − (θ + εi)

1

n− 1

∑
j 6=i

εj.

The first term has expectation E(ε2i ) = σ2
i . The second term has expectation zero. So, σ̂2

i

is unbiased.

(iii) The feasible estimator is a nonlinear function of the σ̂2
i and, hence, will not itself be

unbiased in general.

4. Suppose that you have a random sample from a Geometric distribution with parameter

θ, i.e.,

fθ(x) = θ (1− θ)x−1
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for integers x.

(i) Derive the MLE of θ.

(ii) Show that the score at θ has expectation zero.

(iii) Compute the asymptotic variance of the MLE.

(iv) Is the MLE best asymptotically unbiased?

(i) The log-likelihood is

Ln(θ) =
n∑
i=1

log θ + (xi − 1) log(1− θ) = n log θ + n (x− 1) log(1− θ).

A calculation gives the MLE as θ̂ = x−1.

(ii) The score is
∂ log fθ(xi)

∂θ
=

1− θ xi
θ(1− θ)

.

We have

Eθ

(
∂fθ(xi)

∂θ

)
= Eθ

(
1− θxi
θ(1− θ)

)
=

1− Eθ(xi)θ
θ (1− θ)

= 0,

with the last equality following from the fact that

Eθ(xi) = θ−1.

(iii) The variance of the score is

Eθ

((
1− xi θ
θ (1− θ)

)2
)

=
1

θ2(1− θ)
.

We obtain the same result on calculating the information as (minus) the expected Hessian.

(iv) This is true for maximum likelihood (under correct specification).
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